Abstract

A combined experimental and numerical study was carried out to explore the dynamic response of Q235 thin-walled cylindrical shells under lateral shock loading. The machined Q235 specimens were clamped on both sides and subjected to centered lateral simulated shock loading via foam projectile impact tests, with their dynamic deformation evolution, mid-point deflections, and final deformation modes experimentally measured. The mid-point deflections of the impact side are all positive (the direction of deformation is the same as the impact direction) while those of the rear side all exhibit negative values (the direction of deformation is opposite to the impact direction). To further explore this phenomenon, the method of finite element (FE) was employed to simulate the foam projectile impact, with good agreement against experimental measurements achieved. Using the validated numerical model, the effects of impact velocity, length-to-diameter ratio, and thickness-to-diameter ratio on the dynamic response of the thin-walled cylindrical shell were further analyzed. The direction of both side deflections and deformation modes are significantly affected by the impact level and the shell geometries. For the rear side, within the given range of impact momentum and geometric parameters, the numerically predicted deflection varies from −1.775 mm to 2.45 mm. Thereupon, the coupling of indentation and bulge deformation patterns are indicated, and their corresponding contribution changes are considered the main mechanism for determining the final deformation of the thin-walled cylindrical shell's rear side.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call