Abstract

The dynamic response of circular sandwich panels with aluminium honeycomb and corrugated cores under projectile impact was investigated experimentally and numerically. Impulse loaded on the panel was controlled by projectile launching velocity and the deformation process of sandwich panels was recorded by a high-speed camera in the experiments. Typical deformation/failure modes of face-sheets and cores were obtained and analysed. The back face-sheet deflections and strain histories of face-sheets were measured and discussed. A parametric study was conducted by LS-DYNA 3D to analyse the effect of geometrical configuration on energy absorption mechanism and back face-sheet permanent deflection of circular sandwich panels. The results indicated that the impact resistance of the structure was sensitive to geometrical configuration. Increasing face-sheet thickness and core relative density significantly improved sandwich structure impact resistance. Increasing foil thickness improved the panel impact resistance more efficiently than decreasing wall side length. The results have important reference value to guide engineering application of the sandwich structure subjected to impact loading.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.