Abstract

A critical evaluation is made of the response to horizontal ground shaking of flexible cantilever retaining walls that are elastically constrained against rotation at their base. The retained medium is idealized as a uniform, linear, viscoelastic stratum of constant thickness and semi-infinite extent in the horizontal direction. The parameters varied include the flexibilities of the wall and its base, the properties of the retained medium, and the characteristics of the ground motion. In addition to long-period, effectively static excitations, both harmonic base motions and an actual earthquake record are considered. The response quantities examined include the displacements of the wall relative to the moving base, the wall pressures, and the associated shears and bending moments. The method of analysis used is described only briefly, emphasis being placed on the presentation and interpretation of the comprehensive numerical solutions. It is shown that, for realistic wall flexibilities, the maximum wall forces are significantly lower than those obtained for fixed-based rigid walls and potentially of the same order of magnitude as those computed by the Mononobe-Okabe method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call