Abstract
Although nutrient availability is widely recognized as the driving force behind Microcystis blooms, identifying the microorganisms that play a pivotal role in their formation is a challenging task. Our understanding of the contribution of bacterial communities to the development of Microcystis blooms remains incomplete, despite the fact that the relationship between Microcystis and bacterial communities has been extensively investigated. Most studies have focused on their interaction for a single year rather than for multiple years. To determine key bacteria crucial for the formation of Microcystis blooms, we collected samples from three sites in the Daechung Reservoir (Chuso, Hoenam, and Janggye) over three years (2017, 2019, and 2020). Our results indicated that Microcystis bloom-associated bacterial communities were more conserved across stations than across years. Bacterial communities could be separated into modules corresponding to the different phases of Microcystis blooms. Dolichospermum and Aphanizomenon belonged to the same module, whereas the module of Microcystis was distinct. The microbial recurrent association network (MRAN) showed that amplicon sequence variants (ASVs) directly linked to Microcystis belonged to Pseudanabaena, Microscillaceae, Sutterellaceae, Flavobacterium, Candidatus Aquiluna, Bryobacter, and DSSD61. These ASVs were also identified as key indicators of the bloom stage, indicating that they were fundamental biological elements in the development of Microcystis blooms. Overall, our study highlights that, although bacterial communities change annually, they continue to share core ASVs that may be crucial for the formation and maintenance of Microcystis blooms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.