Abstract

In order to ensure integrity of thermal protection system for hypersonic vehicles, the random dynamic response induced by the combination of the thermal and acoustic loadings has been investigated for a composite thin skin panel resting on a two-parameter elastic foundation. A theoretical model is developed based on the first four symmetric plate modes through Galerkin method. The solutions of a set of the high-order coupled ODEs have been validated by comparison of the postbuckling deflection with the results obtained from FEM postbuckling analysis. A dynamic response evolution parameter deduced from the primary-mode modal equation is used to characterize a transition from linear vibration to fully nonlinear dynamic snap-through. The study demonstrates the combination of acoustic excitation, thermal effect and structural stiffness governs the dynamic response evolution. As the elastic foundation stiffness increases, the buckling temperature increases and the postbuckling deflection decreases, which promote the nonlinear dynamic snap-through response remarkably with reducing snap-through amplitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.