Abstract
In this paper, the dynamic anti-plane crack problem of two dissimilar homogeneous piezoelectric materials bonded through a functionally graded interfacial region is considered. Integral transforms are employed to reduce the problem to Cauchy singular integral equations. Numerical results illustrate the effect of the loading combination parameter λ, material property distribution and crack configuration on the dynamic stress and electric displacement intensity factors. It is found that the presence of the dynamic electric field could impede of enhance the crack propagation depending on the time elapsed and the direction of applied electric impact.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.