Abstract

Computational multibody system (MBS) method is a practical technique utilized for modeling, simulation, and optimization of mechanical systems. In the methodology of computational multibody system, equations of motion are derived, formulated, and solved through a systematic, generalized, and well-structured computational-mathematical approach. In this paper, the computational multibody system formulation, based on the appended Lagrangian method, is implemented to establish the governing equations of ride dynamics for a nonlinear ride model that represents a versatile half-car two-track model of a road vehicle. The input to the system is a simulated road surface model based on the ISO road surface classification. The solution of the equation of motion is obtained using the direct integration approach along with constraint violation elimination and control techniques. Following the simulation, a time-domain multiobjective design optimization procedure is performed to improve the ride quality of the model. The ride quality comprises both ride comfort and ride safety. The optimization considers relevant objective functions including vibration isolation, suspension travel, road holding, and force index. The results of work show that the proposed method could acceptably estimate the optimal values of design variables for specific road classes and vehicle driving speeds. The simulation-based ride quality optimization performed here could facilitate improvement of suspension and tyre.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.