Abstract

Thermal shock describes the way that a material exposed to a sudden change in temperature. These conditions usually take place in aerospace industry, when aircraft encounter the atmosphere layers. It also happens in combustion chamber of engines when mixture of fuel and air ignite in cylinder. Classical thermoelasticity is not capable to analyze such a problem. Therefore, generalized coupled thermoelasticity theories arose. In this article, the dynamic coupled thermoelastic response of a rectangular plate made of functionally graded material subjected to a thermal shock based on Lord-Shulman theory is studied. Using state space approach, the state equations of the problem are obtained. The plate’s boundary condition is simply support on the edges and the variation of mechanical properties is assumed to change along the thickness of the plate. The Laplace transform is applied to transform governing equations from time domain to the Laplace domain. Then by using a numerical method, the equations are solved and the results are inversed to the time domain displacement and temperature field are acquired. Results are presented for different power law indices and they are validated by previous reported literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.