Abstract
Testing and predicting the dynamic response of flexible matrix composites in impact loading condition face two primary challenges: (i) experimentally, existing techniques using existing instruments do not always provide high fidelity material data under simultaneous high strain and high strain rate loading conditions; and (ii) finite element simulations of a highly flexible material require many material parameters and complex mathematical formulations. To address these limitations, this research investigation presents a technique originally developed in-house for modeling and validating hyper-viscoelastic materials and applies it toward the flexible matrix composite. Results from a simple low-velocity impact (2 m/s) test on a 75 × 75 mm2 flexible matrix composite indicate that the critical material properties for the low strength, highly deformable matrix in conjunction with an updated constitutive model can accurately predict the dynamic behavior within 10% with respect to the force time history response using MATLAB and ABAQUS/Explicit. Finite element interrogation also shows full field stress response within the composite specimen not easily measured via sensors and deformation matching the behavior observed via high-speed camera. Finally, on-going research in this arena indicates that the technique can be applied to higher rate loading mechanisms, such as a gas gun and Hopkinson bar apparatus, in order to obtain material parameters for even more devastating impact loading strain rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.