Abstract

There have been many railway construction projects in the loess region of China. Embankment is typically required for rail projects in these regions, since the railway basement is restricted by longitudinal slope requirements. However, there has been little study of the dynamic response of compacted loess embankment under moving train loading. The 2.5D finite element method was adopted to investigate this process and characterize the effects of train speed, height of embankment, and axle weight on the dynamic behavior of subgrade. A rectangular core zone of subgrade was determined, and a prediction model was established to evaluate the long-term settlement of embankment generated by moving train loading. The results showed that embankment height had negligible influence on the variation of dynamic stress. Decays of stress amplitude in both the vertical and horizontal directions slowed with increased train speed. Additionally, the dynamic stress increased linearly with the increase in axle weight due to the linear stress-strain relationship of soil. In the practical speed range (≤ 100 m/s), the dynamic influence depth increased with increasing speed in a range of 3–6 m. A core zone depth of 6 m reflects the effects of moving train loading, with a width of 4 m. For practical conditions (v ≤ 100 m/s), only slight settlement of embankment was observed (≤ 6 mm). However, it is difficult to achieve the same physical parameters used in the experiments (moisture content and compaction degree) in engineering practice. Further work should explore long-term dynamic settlement with relation to the degree of compaction of the embankment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.