Abstract

Presently, the research on the impact performance of the concrete-filled steel tubular (CFT) members has never considered the problem of void defect. Hence, this paper fosters a refined finite element (FE) model of the circular CFT column with ring-shaped voids under transverse impact, which considers the initial contact status of concrete. After validating the accuracy of FE models, the effects of void ratio, steel ratio, impact speed and mass of the drop hammer on the dynamic behaviour of the circular CFT column with ring-shaped voids are explored. Detailed impacting mechanisms of the defect column are acknowledged by elaborating its dynamic time history curves, failure morphology, impact force diffusion path, contact process, and stress/strain distribution rule. Calculation methods for evaluating the impact resistance of the circular CFT column with ring-shaped voids are proposed. The results declare that the appearance of ring-shaped voids would significantly weaken the impact resistance of the CFT column. The impact force and energy dissipation are greatly decreased with the increase in void ratio. Under the transverse impact, the steel tube would be seriously depressed due to the absence of effective support acted by concrete with ring-shaped void, and the core concrete would be heavily damaged in return.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call