Abstract

The dynamic response and cumulative damage mechanism of simplified hull girders (SHGs) subjected to repeated underwater explosions were investigated in this research. Experimental and numerical investigations were conducted to gain a comprehensive understanding of the relationship between cumulative damage and explosive charge. Three series of experiments were carried out on SHGs, subjecting them to both single and repeated loading (up to five times). The analysis focused on the overall deflection values of the SHG and the local bottom plate deflection values, revealing a linear relationship with the cumulative number of occurrences. A validated finite element simulation model was employed to examine the response of the SHGs under repeated blast loading, utilizing experimental results for validation. An impact factor was established to quantify the magnitude of the explosive force, considering both the power of the explosive and the distance of detonation. The SHGs showed localized deformation at 10 impact factors, but experience pronounced cumulative effects at 14.4 and 20 impact factors. Furthermore, a consistent decline in the residual strength of the SHGs as the number of explosions increased. Following the first underwater explosion, the damaged SHG displayed an ultimate plastic bending moment of 3696.5 N m, reflecting a 16.3 % reduction compared to the unloaded SHGs. This reduction can primarily be attributed to the altered load distribution on the deformed SHGs. These findings contributed to the understanding of the cumulative damage behavior and response of SHGs exposed to repeated underwater explosions, providing valuable insights for the design and structural integrity assessment of naval vessels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call