Abstract

For case of oil/gas exploitation and mining in deep water, the length of riser is pretty large and, consequently, it brings huge challenges in both offshore installation and production operations and results in significant cost elevation due to the factors such as extreme tension loads induced from riser suspended self-weight and large structural flexibility. Therefore, there are several alternative riser configurations, e.g. lazy wave, hybrid tower and lazy-wave riser beside free hanging catenary, which have been proposed. In this paper, the dynamic characteristics and responses of several risers with typical configurations are considered and compared with each other based on our numerical simulations. Firstly, the nonlinear dynamic model of the riser systems are developed based on our 3d dynamic riser equations along with the modified FEM simulations. Then the dynamic response is analyzed based on our 3d curved flexible beam approach where the structural curvature changes with its spatial position and time in terms of vector equations. Compared with the linear approach, the nonlinear FEM method is used so as to consider large displacement/deformation, configuration geometry and structural stiffness changing with body motion. Moreover, the hydrodynamic force is considered as being related to body motion too. Based on the FEM numerical simulations, the influences of the amplitude/frequency of the top vessel motion along with the buoyancy modules/tower distribution along structural length on riser’s dynamic responses, in terms of the temporal-spatial evolution of displacement, curvature/bending stress and dynamic tension, are studied for different riser’s configurations. Our results show that the dynamic responses, particularly the maximum top tension, of different riser systems significantly change. Among the examined riser configurations, the response of the riser with more buoyancy modules may have lower value, and buoyancy distribution along structural length can influence the top tension and curvature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call