Abstract
An analytical procedure of dynamic interaction analysis of the straddle monorail bridge–vehicle coupling system is proposed in this paper based on the finite element method and energy method. The calculation procedure is programmed with VB language for the solution of the governing motion equations of the straddle-type monorail bridge–vehicle coupling system. The effects of speed, three kinds of loads and different radius of curvature on dynamic responses of the monorail bridge–vehicle coupling system are analyzed. The simulation indicates that vertical vibration amplitude of the track beam decreases while the lateral amplitude increases with the increase in the radius of the curvature; the maximum value in lateral and vertical direction is 0.075 and 0.43 mm, respectively; and the maximum amplitude (lateral and vertical) and acceleration (lateral and vertical) are 0.69, 0.046 mm, 0.15 and 0.62 m/s2, respectively, at the speed of 80 km/h. The vibration amplitude (lateral and vertical) and vertical acceleration increase with the increasing load, and the maximum values are 0.041, 0.43 mm and 0.44 m/s2, respectively. The lateral acceleration is not easily affected by the load conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.