Abstract

The environment in the ocean is complex, and waves and currents produce complex coupling effects on the structures in the ocean. The flow-solid coupling theory and calculation method are applied to establish a three-dimensional model to study the changes in the flow field under the joint action of waves and currents through the comparative analysis of water velocity at the upper and lower near-wall surfaces of the suspension tunnel tube body. The dynamic response of the tension-leg suspension tunnel is calculated using unidirectional fluid-structure coupling. The relationship between different wave heights, different anchor angles, different flow velocities, and different depths and the deformation of the suspension tunnel in the presence of waves is investigated. The results show that the wave height and velocity have a great influence on the floating tunnel, and the displacement changes in both horizontal and vertical directions are large. With the increase of construction depth, the influence of waves on the floating tunnel becomes smaller. When the angle of the anchor cable is changed, the horizontal direction and the vertical direction change in opposite laws, so it is very important to select a suitable angle for the anchor cable. The research results provide a reference for the design of similar floating tunnels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.