Abstract
In this paper an alternative method for dynamic response analysis of large space structures is presented, for which conventional finite element analysis would require excessive computer storage and computational time. Latticed structures in which the height is very small in comparison to its overall length and width are considered. The method is based on the assumption that the structure can be embedded in its continuum, in which any fiber can translate and rotate without deforming. An appropriate kinematically admissable series function is constructed to descrbe the deformation of the middle plane of this continuum. The unknown coefficients in this function are called the degree-of-freedom of the continuum, which is given the name “super element.” Transformation matrices are developed to express the equations of motion of the actual systems in terms of the degrees-of-freedom of the super element. Thus, by changing the number of terms in the assumed function, the degrees-of-freedom of the super element can be increased or decreased. The super element response results are transformed back to obtain the desired response results of the actual system. The method is demonstrated for a structure woven in the shape of an Archimedian spiral.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.