Abstract
Successful terminal correction without an attitude feedback loop is a challenging task. Much innovative effort is required to achieve a balance between performance and affordability. This paper presents a unique trajectory correction fuze with a reduced number of sensors and actuators. A rapidly calculable analytical dynamic response model for the terminal control force is derived, in which the oscillation part is emphasized because of the limited time-to-go. The accuracy and effectiveness of the analytical model are verified by comparison with 6DOF nonlinear simulations. The influences of the velocity, rotation rate, and pitch on the dynamic response during terminal correction are subsequently investigated using the analytical model. To enable a deep investigation of stability under terminal control with a trajectory correction fuze, the Routh stability criterion is considered to define the necessary prerequisites for stable flight. The validity of the derived instability boundaries is demonstrated through numerical simulations.
Highlights
Summary
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.