Abstract
This paper explores a series of numerical simulations of dynamic responses of multi-piles (dolphin) type substructures for 2.5MW class offshore wind turbine. Firstly computational fluid dynamics (CFD) simulation was performed to evaluate wave loads on the dolphin type substructures with the design wave condition for the west-south region of Korea. Numerical wave tank (NWT) based on CFD was adopted to generate numerically a progressive regular wave using a virtual piston type wave maker. It was found that the water-piercing area of piles of the substructure is a key parameter determining the wave load exerted in horizontal direction. In the next the dynamic structural responses of substructure members under the wave load were calculated using finite element analysis (FEA). In the FEA approach, the dynamic structural responses were able to be calculated including a deformable body effect of substructure members when wave load on each member was determined by Morison's formula. The paper numerically identifies dynamic response characteristics of dolphin type substructures for 2.5MW class offshore wind turbine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.