Abstract

The goal of delivering high-quality service has spurred research of 6G satellite communication networks. The limited resource-allocation problem has been addressed by next-generation satellite communication networks, especially multilayer networks with multiple low-Earth-orbit (LEO) and non-low-Earth-orbit (NLEO) satellites. In this study, the resource-allocation problem of a multilayer satellite network consisting of one NLEO and multiple LEO satellites is solved. The NLEO satellite is the authorized user of spectrum resources and the LEO satellites are unauthorized users. The resource allocation and dynamic pricing problems are combined, and a dynamic game-based resource pricing and allocation model is proposed to maximize the market advantage of LEO satellites and reduce interference between LEO and NLEO satellites. In the proposed model, the resource price is formulated as the dynamic state of the LEO satellites, using the resource allocation strategy as the control variable. Based on the proposed dynamic game model, an open-loop Nash equilibrium is analyzed, and an algorithm is proposed for the resource pricing and allocation problem. Numerical simulations validate the model and algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call