Abstract
In order to optimize the resource utilization of physical machines (PMs), the workload prediction of virtual machines (VMs) is vital but challenging. Most of existing literatures focus on either resource prediction or allocation individually, but both of them are highly correlated. In this paper, we propose a multiobjective genetic algorithm (GA) to dynamically forecast the resource utilization and energy consumption in cloud data center. We formulate a multiobjective optimization problem of resource allocation, which considers the CPU and memory utilization of VMs and PMs, and the energy consumption of data center. The proposed GA forecasts the resource requirement of next time slot according to the historical data in previous time slots. We further propose a VM placement algorithm to allocate VMs for next time slot based on the prediction results of GA. In our simulation-based analysis, the optimal solution for resource prediction under stable and unstable utilization tendency is found by the proposed GA. The prediction result is superior to the previous proposed Grey forecasting model. Results show that the proposed VM placement algorithm not only increases the average utilization level of CPU and memory but also decreases the energy consumption of cloud data center.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.