Abstract

Given the wide range deployment of disconnected delay-tolerant social Internet of Things (SIoT), efficient resource discovery remains a fundamental challenge for large-scale SIoT. The existing search mechanisms over the SIoT do not consider preference similarity and are designed in Cartesian coordinates without sufficient consideration of real-world network deployment environments. In this paper, we propose a novel resource discovery mechanism in a 3-D Cartesian coordinate system with the aim of enhancing the search efficiency over the SIoT. Our scheme is based on both of preference and movement pattern similarity to achieve higher search efficiency and to reduce the system overheads of SIoT. Simulation experiments have been conducted to evaluate this new scheme in a large-scale SIoT environment. The simulation results show that our proposed scheme outperforms the state-of-the-art resource discovery schemes in terms of search efficiency and average delay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.