Abstract
In this paper, we formulate a joint optimization problem for resource allocation and scheduling in full-duplex orthogonal frequency division multiple access (OFDMA) relaying systems with amplify-and-forward (AF) and decode-and-forward (DF) relaying protocols. Our problem formulation takes into account heterogeneous data rate requirements for delay sensitive users. Besides, a theoretically optimal hybrid relaying, which allows a dynamic selection between AF relaying and DF relaying protocols with full-duplex relays or half-duplex relays, is also considered in the problem formulation and serves as a performance benchmark. A dual decomposition method is employed to solve the resulting optimization problem and a novel distributed iterative resource allocation and scheduling algorithm with closed-form power and subcarrier allocation is derived. Simulation results illustrate that the proposed distributed algorithm requires only a small number of iterations to achieves practically the same performance as the optimal centralized algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.