Abstract
We consider the problem of resource allocation in downlink OFDMA systems for multi service and unknown environment. Due to users' mobility and intercell interference, the base station cannot predict neither the Signal to Noise Ratio (SNR) of each user in future time slots nor their probability distribution functions. In addition, the traffic is bursty in general with unknown arrival. The probability distribution functions of the SNR, channel state and traffic arrival/density are then unknown. Achieving a multi service Quality of Service (QoS) while optimizing the performance of the system (e.g. total throughput) is a hard and interesting task since it depends on the unknown future traffic and SNR values. In this paper we solve this problem by modeling the multiuser queuing system as a discrete time linear dynamic system. We develop a robust H∞ controller to regulate the queues of different users. The queues and Packet Drop Rates (PDR) are controlled by proposing a minimum data rate according to the demanded service type of each user. The data rate vector proposed by the controller is then fed as a constraint to an instantaneous resource allocation framework. This instantaneous problem is formulated as a convex optimization problem for instantaneous subcarrier and power allocation decisions. Simulation results show small delays and better fairness among users.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.