Abstract
In this article, we study the dynamic resilient containment control problem for continuous-time multirobot systems (MRSs), i.e., the problem of designing a local interaction protocol that drives a set of robots, namely the followers, toward a region delimited by the positions of another set of robots, namely the leaders, under the presence of adversarial robots in the network. In our setting, all robots are anonymous, i.e., they do not recognize the identity or class of other robots. We consider as adversarial all those robots that intentionally or accidentally try to disrupt the objective of the MRS, e.g., robots that are being hijacked by a cyber–physical attack or have experienced a fault. Under specific topological conditions defined by the notion of <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">(r,s)</i> -robustness, our control strategy is proven to be successful in driving the followers toward the target region, namely a hypercube, in finite time. It is also proven that the followers cannot escape the moving containment area despite the persistent influence of anonymous adversarial robots. Numerical results with a team of 44 robots are provided to corroborate the theoretical findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.