Abstract
The bike-sharing system (BSS) serves as a vital shared mobility mechanism, providing first- and last-mile services in urban transportation. However, one ongoing challenge in the BSS is the spatiotemporal imbalance caused by fluctuating user demand. To address this issue, this paper studies a dynamic bike repositioning problem under scenario-based demand to achieve a balance in inventory levels for electronic fences. Specifically, a multi-period two-stage stochastic model is proposed to make the trade-off between operational costs and service quality. The model incorporates a vehicle no-return (VNR) strategy, which allows vehicles to remain at the last station at the end of each period, awaiting the next repositioning task. To solve the model, an improved rolling horizon framework is introduced to effectively handle the temporal dimension complexity of the multi-period problem. Then a customized hybrid heuristic algorithm based on parallel genetic algorithm and variable neighborhood search is developed to obtain high-quality solutions. To validate the effectiveness and applicability of the proposed method, small-scale and practical-scale numerical experiments are specifically conducted based on real-world BSS data from Beijing, China. The results demonstrate the proposed method (i) creates a substantial reduction in the number of unmet demands when multiple scenarios potentially occur compared to the determined model, (ii) yields an average reduction of 29.04% in operational costs compared to the scheme without the VNR strategy, (iii) overcomes the short-sightedness inherent in the conventional single-period rolling horizon approach, exhibiting closer to optimal performance, and (iv) is superior to baseline approaches in terms of solution quality and efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.