Abstract

Abstract This paper presents the design and analysis of electromagnetic characteristics of a five phase permanent magnet synchronous generator for direct drive wind energy conversion system (WECS). In this study, simple and accurate Dynamic Reluctance Network Modeling is used for design and optimization of generator. The anisotropic structure of stator and rotor for the accurate prediction of flux distribution in the air gap and electromagnetic performance is accounted by the dynamic variation of air gap reluctance in an electrical period. This model considers the leakage flux paths for machine design optimization to achieve better performance. In this context, three permanent magnet (PM) materials namely NdFeB, SmCo and ferrite are considered to evaluate the generated voltage. The dimensions of these permanent magnets are varied and performance under normal and saturated core condition is evaluated. A prototype is developed in the machine laboratory of the IIT(BHU) Varanasi (India) and results obtained in accordance with Finite Element Method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.