Abstract

Purpose This paper aims to solve the problem that pipes conveying fluid are faced with severe reliability failures under the complicated working environment. Design/methodology/approach This paper proposes a dynamic reliability and variance-based global sensitivity analysis (GSA) strategy with non-probabilistic convex model for pipes conveying fluid based on the first passage principle failure mechanism. To illustrate the influence of input uncertainty on output uncertainty of non-probability, the main index and the total index of variance-based GSA analysis are used. Furthermore, considering the efficiency of traditional simulation method, an active learning Kriging surrogate model is introduced to estimate the dynamic reliability and GSA indices of the structure system under random vibration. Findings The variance-based GSA analysis can measure the effect of input variables of convex model on the dynamic reliability, which provides useful reference and guidance for the design and optimization of pipes conveying fluid. For designers, the rankings and values of main and total indices have essential guiding role in engineering practice. Originality/value The effectiveness of the proposed method to calculate the dynamic reliability and sensitivity of pipes conveying fluid while ensuring the calculation accuracy and efficiency in the meantime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call