Abstract

DNA forms conformational states beyond the right-handed double-helix; however, the functional relevance of these non-canonical structures in the brain remains unknown. We show that, in the prefrontal cortex of mice, the formation of one such structure, Z-DNA, is involved in the regulation of extinction memory. Z-DNA is formed during fear learning, and reduced during extinction learning, which is mediated, in part, by a direct interaction between Z-DNA and the RNA editing enzyme Adar1. Adar1 binds to Z-DNA during fear extinction learning which leads to a reduction in Z-DNA at sites where Adar1 is recruited. Knockdown of Adar1 leads to an inability to modify a previously acquired fear memory and blocks activity-dependent changes in DNA structure and RNA state; effects that are fully rescued by the introduction of full-length Adar1. These findings suggest a novel mechanism of learning-induced gene regulation dependent on both proteins which recognize DNA structure, and the state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.