Abstract

Mutations in the NF1 tumor suppressor underlie the familial tumor predisposition syndrome neurofibromatosis type I. Although its encoded protein, neurofibromin, functions as a Ras-GTPase activating protein (GAP), nothing is known about how it is normally regulated or its precise role in controlling Ras signaling pathways. We show here that neurofibromin is dynamically regulated by the ubiquitin-proteasome pathway. Degradation is rapidly triggered in response to a variety of growth factors and requires sequences adjacent to the catalytic GAP-related domain of neurofibromin. However, whereas degradation is rapid, neurofibromin levels are re-elevated shortly after growth factor treatment. Accordingly, Nf1-deficient mouse embryonic fibroblasts (MEFs) exhibit an enhanced activation of Ras, prolonged Ras and ERK activities, and proliferate in response to subthreshold levels of growth factors. Thus, the dynamic proteasomal regulation of neurofibromin represents an important mechanism of controlling both the amplitude and duration of Ras-mediated signaling. Furthermore, this previously unrecognized Ras regulatory mechanism may be exploited therapeutically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.