Abstract

Trachemys scripta elegans can survive up to three months of absolute anoxia at 3°C and recover with minimal cellular damage. Red-eared sliders employ various physiological and biochemical adaptations to survive anoxia with metabolic rate depression (MRD) being the most prominent adaptation. MRD is mediated by epigenetic, transcriptional, post-transcriptional, and post-translational mechanisms aimed at shutting down cellular processes that are not needed for anoxia survival, while reprioritizing ATP towards cell processes that are vital for anaerobiosis. Histone acetylation/deacetylation are epigenetic modifications that maintain a proper balance between permissive chromatin and restricted chromatin, yet very little is known about protein regulation and enzymatic activity of thewriters and erasers of acetylation during natural anoxia tolerance. As such, this study explored the interplay between transcriptional activators, histone acetyltransferases (HATs), and transcriptional repressors, sirtuins (SIRTs), along with three prominent acetyl-lysine (K) moieties of histone H3 in the liver of red-eared sliders. Western immunoblotting was used to measure acetylation levels of H3-K14, H3-K18, and H3-K56, as well as protein levels of histone H3-total, HATs, and nuclear SIRTs in the liver in response to 5h and 20h anoxia. Global and nuclear enzymatic activity of HATs and enzymatic activity of nuclear SIRTs were also measured. Overall, a strong suppression of HATs-mediated H3 acetylation and SIRT-mediated deacetylation was evident in the liver of red-eared sliders that could play an important role in ATP conservation as part of the overall reduction in metabolic rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call