Abstract

SUMMARYWheeled Mobile Manipulators (WMM) possess many advantages over fixed-base counterparts in terms of improved workspace, mobility and robustness. However, the combination of the nonholonomic constraints with the inherent redundancy limits effective exploitation of end-effector payload manipulation capabilities. The dynamic-level redundancy-resolution scheme presented in this paper decomposes the system dynamics into decoupled task-space (end-effector motions/forces) and a dynamically consistent null-space (internal motions/forces) component. This simplifies the subsequent development of a prioritized task-space control (of end-effector interactions) and a decoupled but secondary null-space control (of internal motions) in a hierarchical WMM controller. Various aspects of the ensuing novel capabilities are illustrated using a series of simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.