Abstract

A scheme of dynamic recurrent neural networks (DRNNs) is discussed in this paper, which provides the potential for the learning and control of a general class of unknown discrete-time nonlinear systems which are treated as “black boxes” with multi-inputs and multi-outputs (MIMO). A model of the DRNNs is described by a set of nonlinear difference equations, and a suitable analysis for the input-output dynamics of the model is performed to obtain the inverse dynamics. The ability of a DRNN structure to model arbitrary dynamic nonlinear systems is incorporated to approximate the unknown nonlinear input-output relationship using a dynamic back propagation (DBP) learning algorithm. An equivalent control concept is introduced to develop a model based learning control architecture with simultaneous on-line identification and control for unknown nonlinear plants. The potentials of the proposed methods are demonstrated by simulation results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.