Abstract

Fecal stomal incontinence is a problem that continues to defy surgical treatment. Previous attempts to create continent stomas using dynamic myoplasty have had limited success due to denervation atrophy of the muscle flap used in the creation of the sphincter and because of muscle fatigue resulting from continuous electrical stimulation. To address the problem of denervation atrophy, a stomal sphincter was designed using the most caudal segment of the rectus abdominis muscle, preserving its intercostal innervation as well as its vascular supply. The purpose of the present study was to determine whether this rectus abdominis muscle island flap sphincter design could maintain stomal continence acutely. In this experiment, six dogs were used to create eight rectus abdominis island flap stoma sphincters around a segment of distal ileum. Initially, the intraluminal stomal pressures generated by the sphincter using different stimulation frequencies were determined. The ability of this stomal sphincter to generate continence at different intraluminal bowel pressures was then assessed. In all cases, the rectus abdominis muscle sphincter generated peak pressures well above those needed to maintain stomal continence (60 mmHg). In addition, each sphincter was able to maintain stomal continence at all intraluminal bowel pressures tested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call