Abstract

The Gleeble-3800 thermomechanical simulator unit was used to perform single-pass hot compression tests of the single-phase BCC structure AlFeCoNiMo0.2 high-entropy alloy at the deformation temperature of 950–1150 °C and strain rate of 0.001-1s−1. The hot deformation behavior of the alloy was studied, and the dynamic recrystallization critical strain was determined by the work hardening rate. The dynamic recrystallization mechanism of the alloy was revealed with the microstructure characterization techcique. The study results showed: The dynamic recrystallization critical strain of AlFeCoNiMo0.2 high entropy alloy did not show any notable dependency on the deformation temperature and strain rate. Without reaching the recrystallization temperature, the massive generation of subgrain structures suppresses the formation of dynamic recrystallization grains. The nucleation mechanism of the high-entropy alloy is subgrain merging mechanism caused by dislocation motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call