Abstract

The microstructure and texture evolution of Mg98.5Y1Zn0.5 and Mg92.5Y5Zn2.5 (atomic percent) alloys during hot extrusion were systematically investigated. The coarse LPSO phases with higher volume fraction (~57%) suppressed the twinning generation in the initial stage of extrusion, and accelerated the dynamic recrystallization through the particle deformation zones. Therefore, the volume fraction of DRXed grains in as-extruded Mg92.5Y5Zn2.5 alloy was much higher than that of Mg98.5Y1Zn0.5 alloy. The intensive recrystallization process resulted in the conventional basal texture weakening, although the texture evolution was mainly dominated by flow behavior. The dynamic recrystallization behavior in Mg92.5Y5Zn2.5 alloy restricted the formation of deformation texture, and thus the more random texture was observed during the whole extrusion process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.