Abstract
In this paper, we present a novel Random Walk model called Dynamic Random Walk (DRW) for superpixel segmentation. The proposed DRW adds a new type of node called dynamic node to enrich the features of labels and reduce redundant calculation. By greedily optimizing the Weighted Random Walk Entropy (WRWE), our DRW can consider the features of both seed nodes and dynamic nodes, which enhances the boundary adherence. In addition, a new seed initialization strategy, which can evenly distribute seed nodes in both 2D and 3D space, is proposed to extend our DRW for superpixel segmentation. With this strategy, our DRW can generate superpixels in only one iteration without updating seed nodes. The experiment results show that our DRW is faster than existing RW models, and better than the state-of-the-art superpixel segmentation algorithms in both efficiency and the performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.