Abstract
Dynamic racking tests, coupled with air leakage tests, were performed on fullsize specimens of a new, Earthquake-Isolated Curtain Wall System and a widely used, conventional curtain wall system (used as an experimental control). Dynamic racking tests simulated seismic movements that could be imposed upon a curtain wall system as a result of interstory drifts. Air leakage tests were performed as an indicator of serviceability performance of both curtain wall systems during the dynamic racking tests. The Earthquake-Isolated Curtain Wall System demonstrated strongly superior performance in terms of both serviceability (glass cracking and air leakage) and life safety (glass fallout). The conventional system exhibited vulnerability to annealed monolithic glass cracking and glass fallout at dynamic racking drift indices of 1.9% and 3.1%, respectively. No glass damage was observed in the earthquake-isolated system up to the dynamic racking displacement limit of the test facility, which corresponded to a drift index of 4.9%. Air leakage rates through vision panels in the conventional system remained constant up to a drift index of 1.9%, after which the air leakage rates increased rapidly. In contrast, air leakage rates through vision panels in the earthquake-isolated system remained unchanged up to the 4.9% drift index capacity of the test facility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.