Abstract
It has long been recognized that search queries are often broad and ambiguous. Even when submitting the same query, different users may have different search intents. Moreover, the intents are dynamically evolving. Some intents are constantly popular with users, others are more bursty. We propose a method for mining dynamic query intents from search query logs. By regarding the query logs as a data stream, we identify constant intents while quickly capturing new bursty intents. To evaluate the accuracy and efficiency of our method, we conducted experiments using 50 topics from the NTCIR INTENT-9 data and additional five popular topics, all supplemented with six-month query logs from a commercial search engine. Our results show that our method can accurately capture new intents with short response time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.