Abstract

This paper focuses on the synchronization control issue of networked systems. Due to the imperfect network environment, continuous or precise transmission is impractical, and intermittent communication scheme under state quantization needs to be considered. First, an easy-to-implement dynamic quantizer, which possesses finite quantization level, is designed to deal with the imprecise information sharing. Next, based on the designed quantizer, a dynamic estimator is introduced to estimate the real-time state information and generate control inputs. An event-based communication scheme is utilized to ensure that the estimate error does not exceed a certain threshold. Then, detailed design of the dynamically quantized controller is given to achieve exact synchronization, and corresponding distributed design is also provided to improve the feasibility. Moreover, some results for practical synchronization are derived. Finally, the validity of our theoretical results is illustrated by two numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.