Abstract

We offer a novel way of thinking about the modelling of the time-varying distributions of financial asset returns. Borrowing ideas from symbolic data analysis, we consider data representations beyond scalars and vectors. Specifically, we consider a quantile function as an observation, and develop a new class of dynamic models for quantile-function-valued (QF-valued) time series. In order to make statistical inferences and account for parameter uncertainty, we propose a method whereby a likelihood function can be constructed for QF-valued data, and develop an adaptive MCMC sampling algorithm for simulating from the posterior distribution. Compared to modelling realised measures, modelling the entire quantile functions of intra-daily returns allows one to gain more insight into the dynamic structure of price movements. Via simulations, we show that the proposed MCMC algorithm is effective in recovering the posterior distribution, and that the posterior means are reasonable point estimates of the model parameters. For empirical studies, the new model is applied to analysing one-minute returns of major international stock indices. Through quantile scaling, we further demonstrate the usefulness of our method by forecasting one-step-ahead the Value-at-Risk of daily returns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.