Abstract

Located at the end of the ossicular chain, the stapedial annular ligament (SAL) serves as a closed yet mobile boundary between the cochlear fluid and stapes footplate. It is unclear how SAL properties change with acute otitis media (AOM). This paper reports the measurements of SAL dynamic properties in chinchilla AOM model using dynamic mechanical analyzer (DMA) and frequency-temperature superposition (FTS) principle. AOM was analyzed in two infection groups: 4 days (4D) and 8 days (8D) post induction. SAL specimens were measured using DMA at three temperatures: 5, 25, and 37°C. To extend the testing frequencies to higher levels, FTS principle was employed. Then generalized Maxwell model was utilized to define the constitutive equations of the SAL. The complex shear moduli were obtained from seven samples of control, 4D, and 8D groups. Results show that the storage and loss shear moduli of SALs decreased due to AOM. The storage moduli for 4D and 8D ears were similar below 100Hz, and the loss modulus for 4D was significantly larger than 8D across the entire frequency range. This study reports data that contributes to ear biomechanics and improves understanding on the effects of AOM in middle ear tissues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call