Abstract

Electromyographic activity of dorsal neck muscles elicited by sinusoidal vertical linear accelerations was studied in alert cats over a wide range of frequencies. Experiments were performed in head-fixed cats and total darkness in order to activate selectively the otolith system. The polyunitary EMG activity was recorded from splenius capitis muscles in normal and labyrinthectomized cats during vertical translations varying from 0.05-1 Hz with a fixed 290 mm peak-to-peak amplitude. The corresponding accelerations ranged from 0.003-1.2 g. In normal cats, the results showed a bilateral and sinusoidal modulation of the EMG activity characterized by two typical EMG patterns depending on the stimulus frequency. In the low-frequency range (0.05-0.25 Hz), the neck muscles responses were composed of a second harmonic (frequency double that of the input signal: H2 responses). The H2 pattern was characterized by an increase in EMG activity during both the upward and downward parts of translation. These two components of the H2 response were closely related to the two peak velocities (+90 degrees and -90 degrees) of the animal motion. Only slight decreases in amplitude and shifts in phase were observed when increasing the frequency. In the higher frequency range (0.25-1 Hz), the neck muscles response was composed of a fundamental frequency corresponding to the input signal (H1 response). The H1 pattern was in phase with the peak of downward acceleration at 0.25 Hz. A phase lag (up to 45 degrees) and a gain attenuation (16.5 dB) were observed when increasing the frequency. The two H1 and H2 EMG patterns were totally absent in bilateral vestibular neurectomized cats. In unilateral vestibular neurectomized cats, a strong drop in gain and phase advance was noted, which mainly affected the H1 pattern. The present results describe some characteristics of otolith-spinal reflexes acting on the head musculature during vertical motion. They are compared with the neuronal responses that we have recorded within the vestibular nuclei complex in the same experimental conditions. The functional role of the vertical otolith-neck reflexes in stabilizing the head in space during many real-life situations is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.