Abstract
Delayed feedbacks are quite common in many physical and biolog- ical systems and in particular many physiological systems. Delay can cause a stable system to become unstable and vice versa. One of the well-studied non-biological chemical oscillators is the Belousov-Zhabotinsky(BZ) reaction. This paper presents an investigation of stability and Hopf bifurcation of the Oregonator model with delay. We analyze the stability of the equilibrium by using linear stability method. When the eigenvalues of the characteristic equation associated with the linear part are pure imaginary, we obtain the corresponding delay value. We nd that stability of the steady state changes when the delay passes through the critical value. Then, we calculate the ex- plicit formulae for determining the direction of the Hopf bifurcation and the stability of these periodic solutions bifurcating from the steady states, by using the normal form theory and the center manifold theorem. Finally, numerical simulations results are given to support the theoretical predictions by using Matlab and DDE-Biftool.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.