Abstract

Shape Memory Alloys (SMA) are smart materials that have attracted increasing attention due to their superior damping properties when compared to conventional structural materials. These functional materials exhibit high damping capacity during phase transformation as well as in the low temperature martensitic state. In this work NiTi SMA, commercial aluminum, stainless steel and brass were submitted to dynamic mechanical analysis (DMA) in a single cantilever mode. Small beam specimens were manufactured to accomplish the DMA tests. The studied NiTi presented a damping capacity peak during phase transformation, being much higher than damping of conventional materials. NiTi SMA also showed an increase of storage modulus after conversion of low temperature phase to high temperature phase while an almost linear decrease is observed for the conventional materials studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.