Abstract

Using particle tracking velocimetry, we study the dynamic properties and flowing behavior of immersed granular matter in a rotating drum. In this study, the interstitial fluid is water or a water–glycerol mixture. The filling degree of the particles, the rotation speed, and the viscosity of the interstitial fluid are the three experimental control parameters.The results show that both the granular dynamic properties and flowing behavior are strongly affected by the operational parameters. At lower rotation speed or liquid viscosity, the distance between the centroid of all particles and the center of the tank is the same as the initial configuration, but the distance decreases rapidly when the liquid viscosity is above a critical value. The mean velocity, obtained by averaging the velocities of all particles will decrease with the increase of the liquid viscosity. When the liquid viscosity is above a critical value, the mean velocity will increase, and the granular flow behavior will transform into a suspension regime. Furthermore, the experimental results indicate that the liquid viscosity and the flow rate per unit width have a significant influence on the dynamic properties and flow behavior of the immersed granular matter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.