Abstract
At present, there are few systematic researches on macro-scale heterogeneous modeling and numerical simulation of dynamic mechanical properties of 3-D braided composites. In this paper, the parametric virtual simulation model of 3D five-directional braided composites is realized in the way of “point-line-solid” based on the integrated design idea of process-structure-performance. And the impact compression numerical simulation of the material is carried out by using multi-scale analysis method. The effects of strain rate and braiding angle on transverse impact compression properties and fracture characteristics of composites is studies and verified by comparing the test results with the numerical simulation results systematically. The dynamic failure mechanism of the matrix and fiber bundles during the impact compression process is revealed. The results show that the macro-scale heterogeneous simulation model of 3D five-directional braided composites established is effective, and the numerical simulation results agree well with the test results. The matrix fracture and shear failure of fiber bundles are presented simultaneously under transverse impact compression. The failure of fiber bundles and matrix mainly concentrates on two main fracture shear planes. And the included angle between the fracture shear planes and the vertical direction is consistent with the corresponding internal braiding angle of specimens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Combinatorial Mathematics and Combinatorial Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.