Abstract
The aim of this paper is to address optimality of stochastic control strategies via dynamic programming subject to total variational distance uncertainty on the conditional distribution of the controlled process. Utilizing concepts from signed measures, the maximization of a linear functional on the space of probability measures on abstract spaces is investigated, among those probability measures which are within a total variational distance from a nominal probability measure. The maximizing probability measure is found in closed form. These results are then applied to solve minimax stochastic control with deterministic control strategies, under a Markovian assumption on the conditional distributions of the controlled process. The results include: 1) Optimization subject to total variational distance constraints, 2) new dynamic programming recursions, which involve the oscillator seminorm of the value function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.