Abstract

Given a controlled stochastic process, the reachability set is the collection of all initial data from which the state process can be driven into a target set at a specified time. Differential properties of these sets are studied by the dynamic programming principle which is proved by the Jankov-von Neumann measurable selection theorem. This principle implies that the reachability sets satisfy a geometric partial differential equation, which is the analogue of the Hamilton-Jacobi-Bellman equation for this problem. By appropriately choosing the controlled process, this connection provides a stochastic representation for mean curvature type geometric flows. Another application is the super-replication problem in financial mathematics. Several applications in this direction are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.