Abstract

Many applications in biomedical imaging have a demand on automatic detection of lines, contours, or boundaries of bones, organs, vessels, and cells. Aim is to support expert decisions in interactive applications or to include it as part of a processing pipeline for automatic image analysis. Biomedical images often suffer from noisy data and fuzzy edges. Therefore, there is a need for robust methods for contour and line detection. Dynamic programming is a popular technique that satisfies these requirements in many ways. This work gives a brief overview over approaches and applications that utilize dynamic programming to solve problems in the challenging field of biomedical imaging.

Highlights

  • Dynamic Programming (DP) introduced by Richard Bellman [1] is a widely used technique to solve optimization problems in a simple and efficient way

  • Amini et al [2] showed on the example of active contours how DP can be utilized to perform energy minimization

  • As last method we present a region growing algorithm based on DP proposed in [22]

Read more

Summary

Introduction

Dynamic Programming (DP) introduced by Richard Bellman [1] is a widely used technique to solve optimization problems in a simple and efficient way. DP was used to detect lines in images [3] especially in the field of road detection in satellite images for example by Merlet and Zerubia [4], while Buckley and Yang [5] applied DP to solve a shortest path (SP) problem. In biomedical imaging DP is a popular technique to find contours, lines and boundaries of organs, bones, vessels and cells. This survey focuses on applications in the field of biomedical imaging in particular on the detection and tracking of contours and structures by means of DP.

Objectives
Methods
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.