Abstract
Complex thermal behavior inhibits the advancement of three-dimensional (3D) very-large-scale-integration (VLSI) system designs, as it could lead to ultra-high temperature hotspots and permanent silicon device damage. This article introduces a new runtime thermal management strategy to effectively diffuse and manage heat throughout 3D chip geometry for a better throughput performance in networks on chip (NoC). This strategy employs a dynamic programming-based runtime thermal management (DPRTM) policy to provide online thermal regulation. Reactive and proactive adaptive schemes are integrated to optimize the routing pathways depending on the critical temperature thresholds and traffic developments. Also, when the critical system thermal limit is violated, an urgent throttling will take place. The proposed DPRTM is rigorously evaluated through cycle-accurate simulations, and results show that the proposed approach outperforms conventional approaches in terms of computational efficiency and thermal stability. For example, the system throughput using the DPRTM approach can be improved by 33% when compared to other adaptive routing strategies for a given thermal constraint. Moreover, the DPRTM implementation presented in this article demonstrates that the hardware overhead is insignificant. This work opens a new avenue for exploring the on-chip adaptability and thermal regulation for future large-scale and 3D many-core integrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Design Automation of Electronic Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.